«Детская школа искусств» Мошенского муниципального района

Контрольные работы по геометрии к учебнику атанасяна: Книга: «Геометрия. 7-9 классы. Контрольные работы к учебнику Л. С. Атанасяна и др.» — Александр Фарков. Купить книгу, читать рецензии | ISBN 978-5-377-16884-3

Контрольные работы по геометрии по учебнику Атанасян Л.С. | Учебно-методический материал по геометрии (7 класс) по теме:

7 класс

                                                          Контрольная работа № 1.

                              1 вариант.

1). Три точки В, С, и D  лежат на одной прямой. Известно, что ВD = 17 см, DC = 25 см. Какой может быть длина отрезка ВС ?

2). Сумма вертикальных углов МОЕ и DOC, образованных при пересечении прямых МС и DE, равна 204 0 . Найдите угол МОD .

3). С помощью транспортира начертите угол, равный 780 , и проведите биссектрису смежного с ним угла.

                               2 вариант.

1). Три точки  М, N и К лежат на одной прямой. Известно, что MN = 15 см, NK = 18 см. Каким может быть расстояние МК ?

2). Сумма вертикальных углов АОВ  и СОD, образованных при пересечении прямых АD  и  ВС, равна 108 0 . Найдите угол ВОD .

3). С помощью транспортира начертите угол, равный 1320 , и проведите биссектрису одного из смежных с ним  углов.

                                                         Контрольная работа № 2.

                              1 вариант.

1). На рисунке 1 отрезки АВ  и  СD  имеют общую середину О. Докажите, что .

                                                                 С

       А                            O

                                 

                                                                   В                       

         D   

2). Луч AD – биссектриса угла А. На сторонах угла А отмечены точки В и С так, что  АDВ =  АDС . Докажите, что АВ = АС .

3). В равнобедренном треугольнике с периметром 48 см боковая сторона относится к основанию как 5 : 2 . Найдите стороны треугольника.

                               2 вариант.

1). На рисунке 1 отрезки МЕ и РК  точкой D делятся пополам. Докажите, что  КМD = РЕD.

                                    М                        К

                                      D

        Р                      Е

2). На сторонах угла D отмечены точки М  и  К так, что DМ = DК. Точка Р лежит внутри угла D и РК = РМ . Докажите, что луч DР – биссектриса угла МDК .

3). В равнобедренном треугольнике с периметром 56 см основание относится к боковой стороне как 2 : 3 . Найдите стороны треугольника.

                                                            Контрольная работа № 3.

                                 1 вариант.

1). Отрезки  EF и  PQ пересекаются в их середине М. Докажите, что РЕ // QF.

2). Отрезок DM – биссектриса треугольника CDE. Через точку М проведена прямая, параллельная стороне  CD  и  пересекающая  сторону DE в точке N. Найдите углы треугольника DMN, если .

3). На рисунке АС // ВD, точка М – середина отрезка АВ. Докажите, что М – середина отрезка CD.

                                                               D 

                                      M

                 A                                        B

              C

                                  2 вариант.

1). Отрезки  МN  и  ЕF  пересекаются в их середине Р. Докажите, что ЕN // МF.

2). Отрезок AD – биссектриса треугольника АВС. Через точку D проведена прямая, параллельная стороне  FD  и  пересекающая сторону АС  в точке F. Найдите углы треугольника АDF, если .

3). На рисунке AB // DC, АВ = DC. Докажите, что точка О – середина отрезков АС  и  ВD.

                                    В                        С

     

                                                О

                                  А                          D

                                                            Контрольная работа № 4.

                             1 вариант.

1). На рисунке: . Найдите сторону АВ треугольника АВС.

                                       Е

                                 B              М

                                       

               А                      

                                  C              D      

                                               

                                             F          

2). В треугольнике  СDE  точка  М  лежит на стороне СЕ, причём   — острый. Докажите, что DE > DM.

3). Периметр равнобедренного тупоугольного треугольника равен 45 см, а одна из его сторон больше другой  на  9 см. Найдите стороны треугольника.

                               2 вариант.

1). На рисунке: . Найдите сторону АС треугольника АВС. 

                           Е            М

                                         

                                   A                            С

                                   В

                                                 

                              D          F

2). В треугольнике  MNP  точка  К лежит на стороне  MN, причём   — острый. Докажите , что КР 

3). Одна из сторон тупоугольного равнобедренного треугольника на 17 см меньше другой. Найдите стороны этого треугольника, если его периметр равен 77 см.

                                                            Контрольная работа № 5.

                             1 вариант.

1). В остроугольном треугольнике МNP биссектриса угла М пересекает высоту NK в точке О, причём ОК = 9 см. Найдите расстояние от точки О до прямой МN.

2). Постройте прямоугольный треугольник по гипотенузе и острому углу.

3). Один из углов прямоугольного треугольника равен 60 0, а сумма гипотенузы и меньшего катета равна 42 см. Найдите гипотенузу .

                               2 вариант.

1). В прямоугольном треугольнике  DCE  с  прямым углом С проведена биссектриса EF, причём  FC = 13 см. Найдите расстояние от точки  F  до прямой DE.

2). Постройте прямоугольный треугольник по катету и прилежащему к нему острому углу.

3). В треугольнике АВС , биссектрисы углов  А  и  С  пересекаются  в  точке  О. Найдите угол АОС.

                                                            Итоговая контрольная работа

                             1 вариант.

1). В равнобедренном треугольнике  АВС  с основанием АС угол В равен 42 0. Найдите два других угла треугольника АВС. 

2). Величины смежных углов пропорциональны числам 5 и 7. Найдите разность между этими углами.

3). В прямоугольном треугольнике  АВС , , АС = 10 см , СD  АВ, DE  АС. Найдите  АЕ.

4). В треугольнике  МРК  угол Р составляет 60 0 угла  К, а угол  М на  40  больше угла Р. Найдите угол Р.

                               2 вариант.

1). В равнобедренном треугольнике  АВС  с основанием АС  сумма углов А и С  равна 156 0. Найдите углы треугольника  АВС.

2). Величины смежных углов пропорциональны числам  4 и 11.  Найдите разность между этими углами.

3). В прямоугольном треугольнике  АВС , , ВС = 18 см , СК АВ, КМ ВС. Найдите  МВ.

4). В треугольнике BDE угол  В  составляет  30 0 угла D, а угол Е на 19 0 больше угла D. Найдите угол В.

  

8 класс

                                                             Контрольная работа № 1.

  1.                              1 вариант.

1). Диагонали прямоугольника ABCD пересекается в точке О, ABO = 36°. Найдите AOD.

2).  Найдите углы прямоугольной трапеции, если один из ее углов равен 20°.

3).  Стороны параллелограмма относятся как 1 : 2, а его периметр равен 30 см. Найдите стороны параллелограмма.

4). В равнобокой трапеции сумма углов при большем основании равна 96°. Найдите углы трапеции.

5).* Высота ВМ, проведенная из вершины угла ромба ABCD образует со стороной АВ угол 30°, АМ = 4 см. Найдите длину диагонали BD ромба, если точка М лежит на стороне AD.

  1.                                 2 вариант.

1).  Диагонали прямоугольника MNKP  пересекаются в точке О,MON= 64°. Найдите  ОМР.       2).  Найдите углы равнобокой трапеции, если один из ее углов на 30° больше второго.

3). Стороны  параллелограмма  относятся  как       3 : 1, а его периметр равен 40 см. Найдите стороны параллелограмма.

4).  В прямоугольной трапеции разность углов при одной из боковых сторон равна 48°. Найдите углы трапеции.

5).* Высота ВМ, проведенная из вершины угла ромба ABCD образует со стороной АВ угол 30°, длина диагонали  АС  равна 6 см. Найдите AM, если точка М лежит на продолжении стороны AD.

                                                                    Контрольная работа № 2.

  1.                                1 вариант.

1).  Сторона треугольника равна 5 см, а высота, проведенная к ней, в два раза больше стороны. Найдите площадь треугольника.

2).  Катеты  прямоугольного  треугольника  равны    6 и 8 см. Найдите гипотенузу и площадь треугольника.

3).  Найдите площадь и периметр ромба, если его диагонали равны 8 и 10 см.

4).* В прямоугольной трапеции АВСК большая боковая сторона равна 3см, угол К равен 45°, а высота СН делит основание АК пополам. Найдите площадь трапеции.

                                     2 вариант.

1).  Сторона треугольника равна 12 см, а высота, проведенная к ней, в три раза меньше высоты. Найдите площадь треугольника.

2).  Один из катетов прямоугольного треугольника равен 12 см, а гипотенуза 13 см. Найдите второй катет и гипотенузу треугольника.

3).  Диагонали ромба равны 10 и 12 см. Найдите его площадь и периметр.

4).* В прямоугольной трапеции ABCD большая боковая сторона равна 8 см, угол А равен 60°, а высота ВН делит основание AD пополам. Найдите площадь трапеции.

                                                             Контрольная работа № 3.

                                   1 вариант.

1).  По рис. A = B, СО = 4, DO = 6, АО = 5.

Найти: а).  ОВ;  б).  АС : BD;  в).  .

2).  В треугольнике  ABC  сторона АВ = 4 см, ВС = 7 см, АС = 6 см, а в треугольнике MNK  сторона МК = 8 см, MN =12 см, KN = 14 см. Найдите углы треугольника MNK, если A = 80°, B = 60°.        

3). Прямая пересекает стороны треугольника ABC в точках М и К соответственно так, что МК || АС, ВМ : АМ = 1 : 4. Найдите периметр треугольника ВМК, если периметр треугольника  ABC  равен  25 см.

4).  В трапеции  ABCD  (AD и ВС основания)  диагонали  пересекаются  в точке О, AD = 12 см,  ВС = 4 см. Найдите площадь треугольника  ВОС, если  площадь треугольника  AOD  равна 45 см2. 

                                   2 вариант.

1).  По рис. РЕ || NK, MP = 8, MN = 12, ME = 6. Найти: а) .  МК;  б).  РЕ : NК;  в). .

                       

2).  В  ∆ АВС  АВ = 12 см, ВС = 18 см, В = 70 0, а  в  ∆ МNК  МN = 6 см, NК = 9 см, N = 70 0.  Найдите сторону  АС  и  угол  С  треугольника  АВС, если  МК =  7 см, К = 60 0.

3).  Отрезки АВ и CD пересекаются в точке  О так, что ACO = BDO, АО : ОВ = 2:3. Найдите периметр треугольника  АСО, если  периметр  треугольника  BOD равен 21 см.

4). В трапеции ABCD ( AD и ВС основания) диагонали пересекаются в точке О,  = 32 см2,  = 8 см2. Найдите меньшее основание трапеции, если большее из них равно 10 см.

                                                                Контрольная работа № 4.

                                     1 вариант.

1).  Средние линии треугольника относятся как     2 : 2 : 4, а периметр треугольника равен 45 см. Найдите стороны треугольника.

2). Медианы треугольника ABC пересекаются в точке О. Через точку  О проведена прямая, параллельная стороне  АС  и пересекающая стороны  АВ  и  ВС  в точках  Е  и  F соответственно. Найдите  EF, если сторона АС равна 15 см.

3).  В прямоугольном треугольнике  ABC (C = 90° )  АС = 5 см, ВС = 5 см. Найдите угол  В  и гипотенузу АВ.

4).  В треугольнике ABC A =, C =, сторона  ВС = 7 см, ВН – высота. Найдите АН.

5).  В трапеции  ABCD  продолжения боковых сторон пересекаются в точке К, причем точка  В — середина отрезка  АК. Найдите сумму оснований трапеции, если  AD = 12 см.

  1.                                        2 вариант.

1).  Стороны треугольника относятся как 4 : 5 : 6,  а периметр треугольника, образованного его средними линиями, равен 30 см. Найдите средние линии треугольника.

2). Медианы треугольника MNK пересекаются в точке О. Через точку  О проведена прямая, параллельная стороне МК и пересекающая стороны MN и NK в точках  А и В соответственно. Найдите МК, если длина отрезка  АВ равна 12 см.

3).  В прямоугольном  треугольнике  РКТ (T = 90° ),  РТ = 7см, КТ = 1 см. Найдите угол К и гипотенузу КР.

4).  В треугольнике  ABC  A = , C =, высота ВН равна 4 см. Найдите АС.

5).  В трапеции MNKP продолжения боковых сторон пересекаются в точке Е, причем ЕК = КР. Найдите разность оснований трапеции, если  NK = 7 см.

  1.                                                                     Контрольная работа № 5.

                              1 вариант.

1).   АВ и АС — отрезки касательных, проведенных к окружности радиуса 9 см. Найдите длины отрезков АС и АО, если АВ = 12 см.

2).  По рисунку  АВ : BC = 11 : 12.
Найти: BCA, BAC.

3).  Хорды MN и РК пересека-

ются в точке Е так, что

ME = 12 см, NE = 3 см,

 РЕ = КЕ. Найдите РК.

4).  Окружность с центром О и

радиусом 16 см описана около треугольника ABC так, что угол OAB равен 30°, угол OCB равен  45°. Найдите стороны АВ и ВС треугольника.

                                   2 вариант.

1).  MN и МК — отрезки касательных, проведенных к окружности радиуса 5 см. Найдите MN и МК, если МО = 13 см.

2).  По рисунку AB : АС=5 : 3.
Найти: BOC,  ABC.

3).  Хорды АВ и CD пересека –

ются в точке  F так, что

AF = 4 см, ВF = 16 см, CF = DF.  Найдите CD.

  1. 4).  Окружность с центром О и
  2.  радиусом 12 см описана около
  3. треугольника MNK так, что угол MON равен 120°, угол NOK равен 90°. Найдите стороны MN  и  NK треугольника.

Контрольные работы по геометрии 8 класс к учебнику Атанасяна Л.С.

Контрольная работа № 1. Г-8.

Вариант-1

№ 1. Диагонали прямоугольника ABCD пересекаются в точке О, ∟АВО=360. Найдите угол AOD.

№ 2. Найдите углы прямоугольной трапеции, если один из его углов равен 200.

№ 3. Стороны параллелограмма относятся как 1:2, а его периметр равен 30 см. Найдите стороны параллелограмма.

№ 4. В равнобедренной трапеции сумма углов при большем основании равна 960. Найдите углы трапеции.

№ 5*. Высота ВМ, проведенная из вершины угла ромба ABCD образует со стороной АВ угол 300, АМ = 4 см. Найдите длину диагонали АD.

Контрольная работа № 1. Г-8.

Вариант-2.

№ 1. Диагонали прямоугольника MNKP пересекаются в точке О, ∟MОN=64

0. Найдите угол OMP.

№ 2. Найдите углы равнобедренной трапеции, если один из его углов на 300 больше другого.

№ 3. Стороны параллелограмма относятся как 3:1, а его периметр равен 40 см. Найдите стороны параллелограмма.

№ 4. В прямоугольной трапеции разность углов при одной из боковых сторон равна 480. Найдите углы трапеции.

№ 5*. Высота ВМ, проведенная из вершины угла ромба ABCD образует со стороной АВ угол 300, длина диагонали АС равна 6 см. Найдите AМ, если точка М лежит на продолжении стороны AD.

Контрольная работа № 1. Г-8.

Вариант-3.

№ 1. Периметр параллелограмма 50 см. Одна из его сторон на 5 см больше другой. Найдите длины сторон параллелограмма.

№ 2. Найдите угол между диагоналями прямоугольника, если каждая из них делит угол прямоугольника в отношении 4: 5.

№ 3. Найдите углы параллелограмма, если одна из его диагоналей является высотой и равна одной из его сторон.

№ 4. В трапеции ABCD диагональ BD перпендикулярна боковой стороне AB,

∟ADB = ∟BDC = 300. Найдите длину АD, если периметр трапеции равен 60 см.

№ 5*. В параллелограмме ABCD биссектрисы углов АВС и ВСD пересекаются в точке М. На прямых АВ и СD взяты точки К и Р так, что А –В – К, D – C – P.

Биссектрисы углов КВС и ВСР пересекаются в точке М2,

М 1М2 = 8см. Найдите AD.

Контрольная работа № 1. Г – 8.

Вариант – 4.

1. Периметр параллелограмма 60 см. Одна из его сторон на 6 см меньше другой. Найдите длины сторон параллелограмма.

№ 2. Угол между диагоналями прямоугольника равен 800. Найдите угол между диагональю и меньшей стороной прямоугольника.

№ 3. Найдите углы параллелограмма, если одна из его диагоналей является высотой и равна половине неперпендикулярной к ней стороны параллелограмма.

№ 4. В трапеции ABCD диагональ AС перпендикулярна боковой стороне CD и является биссектрисой угла А. Найдите длину АВ, если периметр трапеции равен 35 см, ∟D = 600.

№ 5*. В параллелограмме ABCD AD = 6 см. Биссектрисы углов АВС и ВСD пересекаются в точке М. На прямых АВ и СD взяты точки К и Р так, что А –В – К, D – C – P. Биссектрисы углов КВС и ВСР пересекаются в точке М 2. Найдите М1М2.

Контрольная работа № 2. Г-8

Вариант-1.

№ 1. Сторона треугольника равна 5 см, а высота, проведенная к ней, в два раза больше стороны. Найдите площадь треугольника.

№ 2. Катеты прямоугольного треугольника равны 6 и 8 см. Найдите гипотенузу и площадь этого треугольника.

№ 3. Найдите площадь и периметр ромба, если его диагонали равны 8 и 10 см.

№ 4*. В прямоугольной трапеции АВСК большая боковая сторона равна 3√2 см, угол К равен 450, а высота СН делит основание АК пополам. Найдите площадь трапеции.

Контрольная работа № 2. Г-8

Вариант-2.

№ 1. Сторона треугольника равна 12 см, а высота, проведенная к ней, в три раза меньше стороны. Найдите площадь треугольника.

№ 2. Один из катетов прямоугольного треугольника равен 12 см, а гипотенуза 13 см. Найдите второй катет и площадь этого треугольника.

№ 3. Диагонали ромба равны 10 и 12 см. Найдите его площадь и периметр.

№ 4*. В прямоугольной трапеции АВСD большая боковая сторона равна 8 см, угол А равен 60

0, а высота ВН делит основание АD пополам. Найдите площадь трапеции.

Контрольная работа № 2. Г-8

Вариант-3.

№ 1. Смежные стороны параллелограмма равны 52 см и 30 см, а острый угол равен 300. Найдите площадь параллелограмма.

№ 2. Вычислите площадь трапеции АВСD с основаниями АD и ВС, если А= 24 см, ВС = 16 см, ∟А= 45, ∟D=90 0.

№ 3. Дан треугольник АВС. На стороне АС отмечена точка К так, что АК = 6 см, КС = 9 см. Найдите площади треугольников АВК и СВК, если АВ = 13 см, ВС = 14 см.

№ 4*. Высота равностороннего треугольника равна 6 см. Найдите сумму расстояний от произвольной точки, взятой внутри этого треугольника, до его сторон.

Контрольная работа № 2. Г-8

Вариант-4.

№ 1.Высота ВК, проведенная к стороне АD параллелограмма АВСD, делит эту сторону на два отрезка АК = 7 см, КD = 15 см. Найдите площадь параллелограмма, если ∟А =45

0.

№ 2. Вычислите площадь трапеции АВСD с основаниями АD и ВС, если ВС = 13 см, АD = 27 см, СD = 10см, ∟D = 300.

№ 3. Дан треугольник МКР. На стороне МК отмечена точка Т так, что МТ= 5 см, КТ = 10 см. Найдите площади треугольников МРТ и КРТ, если МР = 12 см, КР = 9 см.

№ 4*. В равностороннем треугольнике большая сторона составляет

75% суммы двух других. Точка М, принадлежащая этой стороне, является концом биссектрисы треугольника. Найдите расстояние от точки М до меньшей стороны треугольника, если меньшая высота треугольника равна 4 см.

Контрольная работа № 3. Г-8.

Вариант-1. B

№ 1. Рисунок 1

Дано: ∟А = ∟В, СО = 4, DО = 6, АО = 5. С

Найти: а) ОВ; б) АС : ВD; в) SAOC : SBOD.

А О D

№ 2. В треугольнике АВС АВ = 4 см, ВС= 7 см, АС = 6 см, а в треугольнике МNК МК = 8 см, МN =12 см, КN = 14 см. Найдите углы треугольника МNК, если ∟А = 80, ∟В = 600.

№ 3. Прямая пересекает стороны треугольника АВС в точках М и К соответственно так, что МК ║АС, ВМ : АМ = 1: 4. Найдите периметр треугольника ВМК, если периметр треугольника АВС равен 25 см.

№ 4*. В трапеции АВСD (АD и ВС основания) диагонали пересекаются в точке О, А = 12 см, ВС = 4 см. Найдите площадь треугольника ВОС, если площадь треугольника АОD равна 45 см2.

Контрольная работа №3. Г-8.

Вариант-2.

N

№ 1. Рисунок 1. P

Дано: РЕ ║NК, МР = 8, МN = 12, МЕ = 6.

Найти: а) МК; б) РЕ : NК; в) SМЕР : SMKN.

M

E K

№ 2. В ∆АВС АВ = 12 см, ВС = 18 см, ∟В = 700,а в ∆ МNК

MN = 6 cм, NК = 9 см, ∟N= 700. Найдите сторону АС и угол С треугольника АВС, если МК = 7 см, ∟К = 600.

№ 3. Отрезки АВ и СD пересекаются в точке О так, что ∟АСО = =∟ВDО, АО : ОВ = 2 : 3. Найдите периметр треугольника АСО, если периметр треугольника ВОD равен 21 см.

№ 4*. В трапеции АВСD (АD и ВС основания) диагонали пересекаются в точке О, SAOD= 32 см2, S BOC = 8 см2. Найдите меньшее основание трапеции, если большее из них равно 10 см.

Контрольная работа № 3. Г-8.

Вариант-3.

№ 1. Рисунок 1. D B

Дано: АО = 6,8 см, СО = 8,4 см,

ОВ = 5,1 см, ОD = 6,3 см. O

Доказать: АС ║ВD.

Найти: а) DВ : АС; б) РАОС : РDBO ;

в) SDBO: SAOC A C

№ 2. Диагонали ромба АВСD пересекаются в точке О, ВD = 16 см. На стороне АВ взята точка К так, что ОК ┴ АВ и ОК = 4√3 см. Найдите сторону ромба и второю диагональ.

№ 3. В выпуклом четырехугольнике АВСD АВ = 9 см, ВС = 8 см, СD = 16 см, АD = 6 см, ВD = 12 см. Докажите, что АВСD – трапеция.

№ 4*. В равнобедренном треугольнике МNК с основанием МК, равным

10 см, МN= NК = 20 см. На стороне NК лежит точка А так, что

АК : АN= 1 : 3. Найдите АМ.

Контрольная работа № 3. Г-8.

Вариант-4.

№ 1. Рисунок 1. B

Дано: ВD = 3,1 см, ВЕ = 4,2 см,

ВА = 9,3 см, ВС = 12,6 см. D E

Доказать: DЕ ║АС.

Найти: а) DЕ : АС; б) РABC : РDBE ;

в) SDBE : SABC. A C

№ 2. Диагонали ромба АВСD пересекаются в точке О. На стороне АВ взята точка К так, что ОК ┴ АВ, АК = 2 см, ВК = 8 см. Найдите диагонали ромба.

№ 3. АВСD – выпуклый четырёхугольник, АВ = 6 см, ВС = 9 см,

СD = 10 см, DА = 25 см, АС = 15 см. Докажите, что АВСD – трапеция.

№ 4*. В равнобедренном треугольнике АВС АВ = ВС = 40 см,

АС = 20 см. На стороне ВС отмечена точка Н так, что ВН : НС = 3 : 1.

Найдите АН.

Контрольная работа № 4. Г-8.

Вариант-1.

№ 1. Средние линии треугольника относятся как 2: 2: 4, а периметр треугольника равен 45 см. Найдите стороны треугольника.

№ 2. Медианы треугольника АВС пересекаются в точке О. Через точку О проведена прямая, параллельная стороне АС пересекающая стороны АВ и ВС в точках Е и F соответственно. Найдите ЕF, если сторона АС равна 15 см.

№ 3. В прямоугольном треугольнике АВС (∟С= 900) АС = 5 см,

ВС = 5√3 см. Найдите угол В и гипотенузу АВ.

№ 4. В треугольнике АВС ∟А =α, ∟С =β, сторона ВС = 7 см, ВН-высота. Найдите АН.

№ 5. В трапеции АВСD продолжения боковых сторон пересекаются в точке К, причем точка В-середина отрезка АК. Найдите сумму оснований трапеции, если АD = 12 см.

Контрольная работа №4. Г-8.

Вариант-2.

№ 1. Средние линии треугольника относятся как 4: 5: 6, а периметр треугольника, образованного средними линиями, равен 30 см. Найдите средние линии треугольника.

№ 2. Медианы треугольника MNK пересекаются в точке О. Через точку О проведена прямая, параллельная стороне MK пересекающая стороны MN и NK в точках A и B соответственно. Найдите MK, если длина отрезка АB равна 12 см.

№3. В прямоугольном треугольнике РКТ (∟Т= 900), РТ = 7√3 см,

КТ= 7 см. Найдите угол К и гипотенузу КР.

№ 4. В треугольнике АВС ∟А =α, ∟С =β , высота ВН равна 4 см. Найдите АС.

№ 5. В трапеции MNKP продолжения боковых сторон пересекаются в точке E, причем EK=KP. Найдите разность оснований трапеции, если

NK = 7 см.

Контрольная работа № 4. Г-8.

Вариант-3.

№ 1. На стороне ВС треугольника АВС выбрана точка D так, что

ВD: DС = 3:2, точка К – середина отрезка АВ, точка F–середина

отрезка АD, КF =6 см, ∟АDС=1000. Найдите ВС и ∟АFК.

№ 2. В прямоугольном треугольнике АВС ∟С= 900, АС = 4 см,

СВ = 4√3 см, СМ –медиана. Найдите угол ВСМ.

№ 3. В равнобедренной трапеции основания равны 8 см и 12 см, меньший угол равен α . Найдите периметр и площадь трапеции.

№ 4.В равнобедренном треугольнике АВС с основанием АС медианы пересекаются в точке О. Найдите площадь треугольника АВС, если ОА =13 см, ОВ = 10 см.

№ 5. В трапеции АВС (ВС ║АD) АВ ┴ ВD, ВD =2√5 , AD =2√10,

СЕ – высота треугольника ВСD, а tg∟ECD= 3. Найдите ВЕ.

Контрольная работа № 4. Г-8.

Вариант-4.

№ 1. На стороне АМ треугольника АВМ отмечена точка Н так, что

АН: НЬ = 4:7; точка С – середина стороны АВ, точка О –середина стороны отрезка ВН, АМ = 22 см, ∟ВОС = 1050. Найдите СО и

угол ВНМ.

№ 2. В прямоугольном треугольнике MNK ∟K= 90, KM = 6см,

NК =6√3 см, КD- медиана. Найдите угол КDN.

№ 3. В равнобедренной трапеции боковая сторона равна 6 см, меньшее основание 10 см, а меньший угол α . Найдите площадь трапеции.

№ 4. В прямоугольном треугольнике АВС (∟С =900) медианы пересекаются в точке О, ОВ = 10 см, ВС = 12 см. Найдите гипотенузу треугольника.

№ 5. В трапеции АВСD ∟А =90, АС= 6√2, ВС=6, DЕ –высота треугольника АСD, tg∟ACD= 2. Найдите СЕ.

Контрольная работа № 5. Г-8.

Вариант-1.

№ 1. АВ и АС- отрезки касательных, проведенных к окружности радиуса 9 см. Найдите длины отрезков АС и АО, если АВ = 12 см.

№ 2. Рисунок 1. Дано: ᵕАВ : ᵕВС = 11 : 12.

Найдите ∟ВСА, ∟ВАС.

B A


130O

C

№ 3. Хорды MN и PK пересекаются точке E так, что ME =12 см,

NE =3 см, PE=KE. Найдите PK.

№ 4.Окружность с центром в точке О радиусом 16 см описана около треугольника ABC так, что ∟OAB=300, ∟OCB=450. Найдите стороны AB и BC треугольника.

Контрольная работа № 5. Г-8.

Вариант-2.

№ 1. MN и MK-отрезки касательных, проведенных к окружности радиуса 5 см. Найдите MN и MK, если МО= 13 см.

№ 2. Рисунок 1. Дано: ᵕАВ : ᵕАС = 5 : 3.

Найдите ∟ВОС, ∟АВС.

A B

60O

C O

№ 3. Хорды АВ и СD пересекаются точке F так, что АF =4 см,

ВF =16 см, СF=DF. Найдите CD.

№ 4.Окружность с центром в точке О радиусом 12 см описана около треугольника MNK так, что ∟MON=1200, ∟NOK=900. Найдите стороны MN и NK треугольника.

Контрольная работа № 5. Г-8.

Вариант-3.

№ 1. В треугольник вписана окружность так, что три из шести получившихся отрезков касательных равны 3 см,4 см,5 см. Определите вид треугольника

№ 2. Точки А и В делят окружность с центром О на дуги АВМ и

АСВ так, что дуга АСВ на 600 меньше дуги АМВ. АМ- диаметр окружности. Найдите углы АМВ, АВМ, АСВ.

№ 3. Хорды АВ и СD пересекаются в точке Е так, что АЕ=3 см, ВЕ=36 см, СЕ: DЕ =3:4. Найдите СD и наименьшее значение радиуса этой окружности.

№ 4. В равнобедренном треугольнике боковая сторона равна 10 см, а биссектриса, проведенная к основанию 8 см. Найдите радиус окружности, вписанной в этот треугольник, и радиус окружности, описанной около этого треугольника.

Контрольная работа № 5. Г-8.

Вариант-4.

№ 1. В прямоугольный треугольник вписана окружность радиусом 2 см так, что один из получившихся отрезков касательных равен 4 см. Найдите стороны треугольника, если его периметр равен 24 см.

№ 2.Точки Е и Н делят окружность с центром О на дуги ЕАН и ЕКН так, что дуга ЕКН на 900 меньше дуги ЕАН, ЕА- диаметр окружности. Найдите углы ЕКА, ЕАН, ЕКН.

№ 3. Хорды МN и РК пересекаются в точке А так, что МА= 3 см,

NА= 16 см, РА: КА= 1: 3. Найдите РК и наименьшее значение радиуса этой окружности.

№ 4. В равнобедренном треугольнике основание равно 10 см, а высота,

Проведенная к ней, 12 см. Найдите радиус окружности, вписанной в этот треугольник, и радиус окружности, описанной около этого треугольника.

№ 1

№ 2

№ 3

№ 4

№ 5

Контрольная работа № 1.

Вариант-1

∟АОD=72

900 , 900,

1600, 200

5см, 10см,

5см, 10см

480, 480,

1320, 1320

DВ=6см

Вариант-2

∟ОМР=32

750, 1050,

1050, 750

5см, 15см,

5см, 15см

660, 1140,

900, 900

АМ=3см

Вариант-3

10см, 15см,

10см, 15см

800

450, 1350

450,1350

AD=24см

AD=8см

Вариант-4

18см, 12см,

18см, 12см

500

300, 300,

1500, 1500

АВ= 7см

М1 М2 =6см

Контрольная работа № 2.

Вариант-1

24см2

10см, 24см2

Р=4√41см, S= 40cм2

S АВСК= 13,5см2

Вариант-2

24см2

5см, 30см2

Р=4√61см, S= 60cм2

S АВСD= 24√3см2

Вариант-3

780cм2

SABCD = 160cм2

SABK =33,6см2,

SCBK =50,4см2

6см

Вариант-4

154см2

SABCD = 100cм2

SKPT=36см2,

SMPT =18см2

3см

Контрольная работа № 3.

Добавить комментарий

©2025 «Детская школа искусств» Мошенского муниципального района