Дидактические материалы по математике. 5 класс — Чесноков А.С., Нешков К.И. | 978-5-494-02726-9
Стоимость товара может отличаться от указанной на сайте!Наличие товара уточняйте в магазине или по телефону указанному ниже.
г. Воронеж, площадь Ленина, д.4
8 (473) 277-16-90
г. Липецк, проспект Победы, 19А
8 (4742) 22-00-28
г. Липецк, пл.Плеханова, д. 7
8 (4742) 47-02-53
8 (473) 247-22-55
г. Воронеж, ул. Ленинский проспект д.153
8 (473) 223-17-02
г. Нововоронеж, ул. Ленина, д.8
8 (47364) 92-350
г. Воронеж, ул. Хользунова, д. 358 (473) 246-21-08
г. Россошь, Октябрьская пл., 16б
8 (47396) 5-29-29
г. Россошь, пр. Труда, д. 26А
8 (47396) 5-28-07
8 (47391) 2-22-01
г.Воронеж, ул. Жилой массив Олимпийский, д.1
8 (473) 207-10-96
г. Калач, пл. Колхозного рынка, д. 21
8 (47363) 21-857
г. Воронеж, ул.Челюскинцев, д 88А8 (4732) 71-44-70
г. Старый Оскол, ул. Ленина, д.22
8 (4725) 23-38-06
г. Воронеж, ул. Ростовская, д,58/24 ТЦ «Южный полюс»
8 (473) 280-22-42
г.
8 (473) 300-41-49
г. Липецк, ул.Стаханова,38 б
8 (4742) 78-68-01
г. Курск, ул. Щепкина, д. 4Б
8 (4712) 73-31-39
Дидактические материалы по математике 5 класс К учебнику Виленкина Попов
Дидактические материалы Попова по математике за 5 класс, предлагаемые для скачивания, соответствуют ФГОС. Пособие является необходимым приложением к школьному учебнику Виленкина, рекомендованному МОН России и включенному в ФПУ. Пособие содержит материалы по контролю и оценке подготовки уч-ся 5-х классов, предусмотренной программой. Предложены 43 самостоятельные работы в 2 вар. и 14 контрольных работ в 4 вариантах. Они дают возможность с наибольшей точностью оценить знания каждого школьника. Пособие содержит итоговую контрольную работу, а также задания по развитию смекалки и логики. Адресовано учителям, учащимся для подготовки к урокам, самостоятельным, контрольным работам.-Содержание-
САМОСТОЯТЕЛЬНЫЕ РАБОТЫ 08
Натуральные числа 08
Натуральные числа шкалы 09
Самостоятельная работа №1. 09
Самостоятельная работа №2. 010
Самостоятельная работа №3. 011
Самостоятельная работа №4. 012
Самостоятельная работа №5. . 013
Сложение — вычитание натуральных чисел 014
Самостоятельная работа №6. 014
Самостоятельная работа №7. 016
Самостоятельная работа №8. 018
Самостоятельная работа №9. 019
Самостоятельная работа №10. 020
Умножение — деление натуральных чисел 021
Самостоятельная работа №11. 021
Самостоятельная работа №12. 023
Самостоятельная работа №13. 025
Самостоятельная работа №14. 026
Самостоятельная работа №15. 028
Самостоятельная работа №16. 029
Площади и объёмы 030
Самостоятельная работа №17. 030
Самостоятельная работа №18. 032
Самостоятельная работа №19. 033
Самостоятельная работа №20. 034
Самостоятельная работа №21. 035
Дробные числа 0
Обыкновенные дроби 036
Самостоятельная работа №22. 036
Самостоятельная работа №23. 038
Самостоятельная работа №24. 040
Самостоятельная работа №25. 042
Самостоятельная работа №26. 044
Самостоятельная работа №27. 046
Самостоятельная работа №28. 047
Самостоятельная работа №29. 049
Десятичные дроби. 051
Самостоятельная работа №30. 051
Самостоятельная работа №31. 052
Самостоятельная работа №32. 053
Самостоятельная работа №33. 054
Умножение — деление десятичных дробей 055
Самостоятельная работа №34. 055
Самостоятельная работа №35. 057
Самостоятельная работа №36. 058
Самостоятельная работа №37. 059
Самостоятельная работа №38. 060
Инструменты для вычислений 061
Самостоятельная работа №39. 061
Самостоятельная работа №40. 062
Самостоятельная работа №41. 063
Самостоятельная работа №42. 064
Самостоятельная работа №43. 065
Круговые диаграммы 065
КОНТРОЛЬНЫЕ РАБОТЫ 066
Натуральные числа 066
Контрольная работа №1. 066
Контрольная работа №2. 069
Контрольная работа №3. 072
Контрольная работа №4. 074
Контрольная работа №5. 076
Контрольная работа №6. 078
Дробные числа 80
Контрольная работа №7. 080
Контрольная работа №8. 084
Контрольная работа №9. 087
Контрольная работа №10. 089
Контрольная работа №11. 091
Контрольная работа №12. 093
Контрольная работа №13. 096
Контрольная работа №14. 098
ЗАДАНИЯ НА СМЕКАЛКУ, ЛОГИКУ 0100
ОТВЕТЫ 104
Самостоятельные работы 0104
Натуральные числа 0104
Дробные числа 0116
Контрольные работы 0129
Натуральные числа 0129
Дробные числа 0135
Задания на смекалку, логику 0143
Скачать
Размер файла:1 Мб; Формат: pdf/
Вместе с «Дидактические материалы по математике 5 класс К учебнику Виленкина Попов» скачивают:
AdminДорофеев. Математика 5 класс. Дидактические материалы (Просвещение)
Переплет | мягкий |
ISBN | 978-5-09-072774-7 |
Год издания | 2021 |
Количество томов | 1 |
Количество страниц | 110 |
Серия | Математика и информатика |
Издательство | Просвещение |
Автор | Кузнецова Л. В., Минаева С.С., Рослова Л.О. |
Возрастная категория | 5 кл. |
Раздел | Математика |
Тип издания | Дидактический материал |
Язык | русский |
Описание к товару: «Кузнецова, Минаева.
Математика 5 класс. Дидактические материалы. УМК Дорофеев Г.В.»Учебное пособие содержит обучающие и проверочные работы. Обучающие работы нацелены на формирование важнейших умений и навыков, относящихся к арифметическому материалу курса математики 5 класса. Проверочные работы, охватывающие весь материал курса, предназначены для текущего оперативного контроля. Использование дидактических материалов позволит индивидуализировать учебный процесс на этапе отработки навыков. Книга адресована школьникам, учителям математики, преподающим по учебнику «Математика. 5 класс» под редакцией Г. В. Дорофеева и И. Ф. Шарыгина, и студентам педвузов.
Раздел: Математика Издательство: ПРОСВЕЩЕНИЕСерия: Математика и информатика
Вы можете получить более полную информацию о товаре «Дорофеев. Математика 5 класс. Дидактические материалы (Просвещение)«, относящуюся к серии: Математика и информатика, издательства Просвещение, ISBN: 978-5-09-072774-7, автора/авторов: Кузнецова Л. В., Минаева С.С., Рослова Л.О., если напишите нам в форме обратной связи.
ВПР в 6 классе
История России. Официальная демоверсия (образец) проверочной работы по математике для 6 класса. Официальная демоверсия (образец) проверочной работы по русскому языку для 6 класса. Официальная демоверсия (образец) проверочной работы по обществознанию для 6 класса. Образец (демоверсия) проверочной работы для 6 класса. Официальная демоверсия (образец) проверочной работы по географии для 6 класса. Официальная демоверсия (образец) проверочной работы по биологии для 6 класса.ГАУ СО РЦОКО — Центр Оценки Качества Образования
Горячая линия ГИА-9: 8 (8452) 75-62-20 Горячая линия ГИА-11: 8 (8452) 47-81-15Аттестация педагогических работников: 8 (8452) 75–35–04
Горячая линия по вопросам ВПР и мониторинга системы образования региона: 8 (8452) 57–99–38
Темы итогового сочинения 19.
05.2021 года
НОМЕР |
ТЕМА |
144 |
Почему День Победы для многих людей – главный праздник в нашей стране? |
251 |
Какие отношения между друзьями Вы считаете гармоничными? |
345 |
Люди, опередившие своё время, какие они? |
452 |
Возможно ли всегда поступать по совести? |
541 |
К чему стремятся мои сверстники? |
19. 05.2021 09:04:34
О выдаче уведомлений участникам ЕГЭ-2021
Выдача уведомлений для участников ЕГЭ-2021, зарегистрированных в Саратовской области, будет осуществляться с 17.05.2021 г. по 28.05.2021 г. в отделах образования муниципальных районов по месту проживания.
Участники ЕГЭ, проживающие на территории г. Саратова, с 17.05.2021 г. по 28.05.2021 г. могут получить уведомления в ГАУ СО «РЦОКО» по адресу: г. Саратов, ул. Мичурина, 89.
График выдачи уведомлений в ГАУ СО «РЦОКО»:
понедельник-четверг: с 9.30 до 17.00
пятница: с 9.30 до 16.00
перерыв на обед: с 13.00 до 14.00
08.05.2021 11:37:24
Об утверждении нового расписания проведения итогового сочинения (изложения) в 2020-2021 учебном году
На основании совместного приказа Министерства просвещения России и Рособрнадзора от 05. 03.2021 года №88/245 утверждено новое расписание проведения итогового сочинения (изложения) в 2020-2021 учебном году.
Основной срок проведения итогового сочинения (изложения) – 15 апреля 2021 года, дополнительные сроки – 12 и 19 мая 2021 года. В дополнительные сроки смогут принять участие выпускники, получившие за сочинение (изложение) «незачет», либо отсутствовавшие в основной срок по уважительной причине, подтвержденной документально.
25.04.2021 14:24:17
Изменение официального Интернет-ресурса, на котором осуществляется опубликование комплектов тем итогового сочинения
Рособрнадзор информирует об изменении официального Интернет-ресурса, на котором осуществляется опубликование комплектов тем итогового сочинения в день проведения итогового сочинения (письмо Рособрнадзора от 13.04.2021 г.).
Комплекты тем итогового сочинения НЕ БУДУТ размещаться на портале ege. edu.ru ввиду того, что указанный портал более не доступен.
Комплекты тем итогового сочинения за 15 минут до проведения итогового сочинения по местному времени будут размещены на официальном Интернет-ресурсе topic.rustest.ru
14.04.2021 13:18:24
КУРСЫ ПОВЫШЕНИЯ КВАЛИФИКАЦИИ
14 мая 2021 года состоялся первый выпуск слушателей курсов повышения квалификации по программе разработанной специалистами ГАУ СО «РЦОКО» «Оценка качества образования в общеобразовательной организации».
Обучение проходило в очно-заочной форме. Слушателям был предоставлен материал по 4 модулям в объеме 108 часов, каждый из которых завершался практической работой, связанной с оценкой качества образования.
Итоговое собеседование проходило в формате пользователя кабинета ФИС ОКО. Все слушатели блестяще справились со своей задачей и получили удостоверение о повышении квалификации в области оценки качества образования.
17.05.2021 13:32:39
Темы итогового сочинения 12.05.2021 года
НОМЕР |
ТЕМА |
126 |
Почему нельзя забывать о героях и жертвах Великой Отечественной войны? |
223 |
В чём польза и опасность конфликта? |
331 |
Можно ли считать, что перемены – всегда к лучшему? |
421 |
Что значит быть самим собой? |
525 |
Как современная молодёжь относится к традициям? |
12. 05.2021 08:54:11
НАЦИОНАЛЬНЫЕ ИССЛЕДОВАНИЯ КАЧЕСТВА ОБРАЗОВАНИЯ
На официальном сайте Федерального института оценки качества образования (ФИОКО) опубликован отчет по результатам проведения национального исследования качества образования (НИКО) за 2020 год в части достижения личностных и метапредметных результатов.
Саратовская область принимала участие в апробации НИКО в части достижения личностных и метапредметных результатов в 6 и 8 классах.
Согласно федеральной выборке в НИКО приняли участие от Саратовской области:
СОШ п. Индустриальный Екатериновского района – 10 обучающихся 6 классов;
ООШ № 5 Петровского района –19 обучающихся 6 классов;
СОШ № 101 Ленинского района г. Саратова – 60 обучающихся 8 классов;
СОШ с. Миусс Ершовского района – 4 обучающихся 8 классов.
Отчет по результатам НИКО за 2020 год доступен по ссылке
27. 04.2021 10:33:18
% PDF-1.4 % 7616 0 объект > эндобдж xref 7616 319 0000000016 00000 н. 0000021012 00000 п. 0000021205 00000 п. 0000021338 00000 п. 0000021376 00000 п. 0000021617 00000 п. 0000021911 00000 п. 0000021950 00000 п. 0000025690 00000 п. 0000029610 00000 п. 0000033482 00000 п. 0000037237 00000 п. 0000040818 00000 п. 0000044878 00000 п. 0000046067 00000 п. 0000047265 00000 п. 0000048462 00000 п. 0000052552 00000 п. 0000056903 00000 п. 0000056933 00000 п. 0000121387 00000 н. 0000121466 00000 н. 0000121528 00000 н. 0000121572 00000 н. 0000121746 00000 н. 0000171638 00000 н. 0000171841 00000 н. 0000172336 00000 н. 0000172431 00000 н. 0000173390 00000 н. 0000173606 00000 н. 0000174044 00000 н. 0000174180 00000 н. 0000224431 00000 н. 0000224648 00000 н. 0000225127 00000 н. 0000225668 00000 н. 0000225799 00000 н. 0000226000 00000 н. 0000226412 00000 н. 0000226520 00000 н. 0000226631 00000 н. 0000227085 00000 н. 0000227176 00000 н. 0000227287 00000 н. 0000227631 00000 н. 0000227722 00000 н. 0000227833 00000 н. 0000228166 00000 н. 0000228257 00000 н. 0000228368 00000 н. 0000228704 00000 н. 0000228795 00000 н. 0000228906 00000 н. 0000229237 00000 н. 0000229328 00000 н. 0000229439 00000 н. 0000229515 00000 н. 0000229640 00000 н. 0000230040 00000 н. 0000230187 00000 н. 0000230318 00000 н. 0000230580 00000 н. 0000230727 00000 н. 0000230858 00000 п. 0000231090 00000 н. 0000231295 00000 н. 0000231426 00000 н. 0000231817 00000 н. 0000231998 00000 н. 0000232129 00000 н. 0000232475 00000 н. 0000232622 00000 н. 0000232753 00000 н. 0000233051 00000 н. 0000233198 00000 н. 0000233329 00000 н. 0000233673 00000 н. 0000233837 00000 н. 0000233968 00000 н. 0000234268 00000 н. 0000234415 00000 н. 0000234546 00000 н. 0000234833 00000 п. 0000235037 00000 н. 0000235167 00000 н. 0000235514 00000 н. 0000235657 00000 н. 0000235787 00000 п. 0000236086 00000 н. 0000236229 00000 н. 0000236359 00000 н. 0000236716 00000 н. 0000236888 00000 н. 0000237018 00000 п. 0000237322 00000 н. 0000237579 00000 п. 0000237709 00000 н. 0000237955 00000 п. 0000238098 00000 н. 0000238228 00000 п. 0000238472 00000 н. 0000238723 00000 н. 0000238853 00000 н. 0000239154 00000 н. 0000239297 00000 н. 0000239427 00000 н. 0000239805 00000 н. 0000239948 00000 н. 0000240076 00000 н. 0000240211 00000 н. 0000240470 00000 н. 0000240653 00000 п. 0000240864 00000 н. 0000241097 00000 н. 0000241300 00000 н. 0000241487 00000 н. 0000241698 00000 н. 0000241971 00000 н. 0000242150 00000 н. 0000242329 00000 н. 0000242655 00000 н. 0000242905 00000 н. 0000243147 00000 н. 0000243449 00000 н. 0000243615 00000 н. 0000243777 00000 н. 0000244016 00000 н. 0000244291 00000 н. 0000244556 00000 н. 0000244815 00000 н. 0000245010 00000 н. 0000245181 00000 н. 0000245396 00000 н. 0000245607 00000 н. 0000245800 00000 н. 0000245957 00000 н. 0000246146 00000 н. 0000246303 00000 н. 0000246494 00000 н. 0000246663 00000 н. 0000246842 00000 н. 0000247029 00000 н. 0000247278 00000 н. 0000247534 00000 н. 0000247724 00000 н. 0000247928 00000 н. 0000248223 00000 н. 0000248574 00000 н. 0000248791 00000 н. 0000249103 00000 п. 0000249275 00000 н. 0000249571 00000 н. 0000249861 00000 н. 0000250149 00000 н. 0000250337 00000 н. 0000250537 00000 н. 0000250695 00000 н. 0000250853 00000 п. 0000251033 00000 н. 0000251253 00000 н. 0000251435 00000 н. 0000251629 00000 н. 0000251867 00000 н. 0000252103 00000 н. 0000252313 00000 н. 0000252545 00000 н. 0000252769 00000 н. 0000252941 00000 н. 0000253227 00000 н. 0000253505 00000 н. 0000253759 00000 н. 0000254015 00000 н. 0000254245 00000 н. 0000254491 00000 н. 0000254709 00000 н. 0000254917 00000 н. 0000255142 00000 н. 0000255350 00000 н. 0000255546 00000 н. 0000255880 00000 н. 0000256162 00000 н. 0000256310 00000 н. 0000256496 00000 н. 0000256725 00000 н. 0000256948 00000 н. 0000257330 00000 н. 0000257590 00000 н. 0000257726 00000 н. 0000258016 00000 н. 0000258266 00000 н. 0000258514 00000 н. 0000258738 00000 н. 0000258988 00000 н. 0000259198 00000 н. 0000259410 00000 н. 0000259622 00000 н. 0000259848 00000 н. 0000260082 00000 н. 0000260294 00000 н. 0000260554 00000 н. 0000260820 00000 н. 0000261010 00000 н. 0000261256 00000 н. 0000261468 00000 н. 0000261682 00000 н. 0000261900 00000 н. 0000262162 00000 н. 0000262378 00000 н. 0000262616 00000 н. 0000262820 00000 н. 0000263064 00000 н. 0000263298 00000 н. 0000263596 00000 н. 0000263758 00000 п. 0000263956 00000 н. 0000264166 00000 н. 0000264323 00000 п. 0000264583 00000 н. 0000264765 00000 н. 0000265005 00000 н. 0000265253 00000 н. 0000265425 00000 н. 0000265643 00000 п. 0000265816 00000 н. 0000266002 00000 н. 0000266188 00000 н. 0000266374 00000 н. 0000266548 00000 н. 0000266734 00000 н. 0000266940 00000 н. 0000267104 00000 п. 0000267298 00000 н. 0000267476 00000 н. 0000267682 00000 н. 0000267914 00000 н. 0000268102 00000 н. 0000268332 00000 н. 0000268520 00000 н. 0000268730 00000 н. 0000268928 00000 н. 0000269114 00000 н. 0000269292 00000 н. 0000269460 00000 н. 0000269638 00000 н. 0000269884 00000 н. 0000270050 00000 н. 0000270207 00000 н. 0000270464 00000 н. 0000270653 00000 п. 0000270840 00000 н. 0000271100 00000 н. 0000271288 00000 н. 0000271488 00000 н. 0000271704 00000 н. 0000271858 00000 н. 0000272113 00000 н. 0000272424 00000 н. 0000272626 00000 н. 0000272815 00000 н. 0000272997 00000 н. 0000273209 00000 н. 0000273413 00000 н. 0000273591 00000 н. 0000273743 00000 н. 0000273909 00000 н. 0000274111 00000 н. 0000274303 00000 н. 0000274611 00000 н. 0000274870 00000 н. 0000275169 00000 н. 0000275419 00000 н. 0000275631 00000 н. 0000275841 00000 н. 0000276089 00000 н. 0000276264 00000 н. 0000276529 00000 н. 0000276790 00000 н. 0000277077 00000 н. 0000277264 00000 н. 0000277571 00000 н. 0000277734 00000 н. 0000278001 00000 н. 279LGxE / + tQ $ * «Aa0W iL
Потенциал цифровых инструментов для улучшения изучения математики и естественных наук в средних школах: контекстно-зависимый мета-анализ
Основные моменты
- •
Обучение естествознанию и математике с использованием технологий может улучшить обучение учащихся.
- •
Подготовка учителей значительно снижает общий эффект.
- •
Интеллектуальные обучающие системы и моделирование оказывают большое влияние на обучение студентов.
- •
Системы тренировки и практики или гипермедиа мало влияют на обучение студентов.
- •
Обучение с использованием технологий положительно влияет на отношение учащихся.
Реферат
В этом всестороннем метаанализе, основанном на систематических исследованиях, опубликованных с 2000 года, было изучено, как использование технологий может улучшить изучение математики и естественных наук в средней школе (классы 5–13). Во всех исследованиях ( k = 92) сравнивались результаты обучения студентов, использующих цифровые инструменты, с результатами обучения в контрольной группе, обучавшейся без использования цифровых инструментов. В целом использование цифровых инструментов оказало положительное влияние на результаты обучения студентов ( г, = 0,65, р, <0,001). Проведение тренингов для учителей по использованию цифровых инструментов значительно снизило общий эффект. Использование интеллектуальных обучающих систем или моделирования, таких как динамические математические инструменты, было значительно более выгодным, чем гипермедиа.На описательном уровне размер эффекта был больше, когда цифровые инструменты использовались в дополнение к другим методам обучения, а не в качестве замены. Результаты открывают новые направления для будущих исследований и могут использоваться для принятия обоснованных решений об использовании цифровых инструментов в образовании.
Ключевые слова
Компьютерное обучение наукам
Математика
Медиа в образовании
Мета-анализ
Среднее образование
Рекомендуемые статьиЦитирующие статьи (0)
Просмотр аннотации© 2020 Авторы. Опубликовано Elsevier Ltd.
Рекомендуемые статьи
Цитирующие статьи
Обучение навыкам решения проблем | Center for Teaching Excellence
Многие преподаватели инженерного дела, математики и естествознания предлагают ученикам решать «задачи». Но решают ли их ученики настоящие задачи или просто упражнения? Первый подчеркивает критическое мышление и навыки принятия решений, тогда как второй требует только применения ранее изученных процедур. Истинное решение проблемы — это процесс применения метода — заранее неизвестного — к проблеме, которая подчиняется определенному набору условий и которую решатель проблемы не видел раньше, чтобы получить удовлетворительное решение.
Ниже вы найдете некоторые основные принципы обучения решению проблем и одну модель, которую можно использовать в своем классе.
Принципы обучения решению проблем
- Смоделируйте полезный метод решения проблем . Решение проблем может быть трудным, а иногда и утомительным. Покажите студентам на своем примере, как проявлять терпение и настойчивость и как следовать структурированному методу, например модели Вудса, описанной здесь. Формулируйте свой метод по мере его использования, чтобы учащиеся увидели взаимосвязь.
- Обучайте в определенном контексте . Обучайте навыкам решения проблем в контексте, в котором они будут использоваться (например, расчет мольной доли в курсе химии). Используйте реальные проблемы в объяснениях, примерах и на экзаменах. Не обучайте решению проблем как независимому абстрактному навыку.
- Помогите учащимся понять проблему . Для решения задач учащимся необходимо определить конечную цель. Этот шаг имеет решающее значение для успешного обучения навыкам решения проблем.Если вам удастся помочь студентам ответить на вопросы «что?» и «почему?», находя ответ на «как?» будет легче.
- Не торопитесь . При планировании лекции / учебного курса выделите достаточно времени для: понимания проблемы и определения цели, как индивидуально, так и в классе; ответы на вопросы от вас и ваших учеников; делать, находить и исправлять ошибки; и решение всех проблем за один сеанс.
- Задавайте вопросы и вносите предложения .Попросите учащихся предсказать «что произойдет, если…» или объясните, почему что-то произошло. Это поможет им развить навыки аналитического и дедуктивного мышления. Кроме того, задавайте вопросы и предлагайте стратегии, чтобы побудить учащихся задуматься о стратегиях решения проблем, которые они используют.
- Связать ошибки с заблуждениями . Используйте ошибки как свидетельство неправильных представлений, а не небрежности или случайных предположений. Постарайтесь изолировать заблуждение и исправить его, а затем научите студентов делать это самостоятельно.Мы все можем учиться на ошибках.
Модель решения проблем Вудса
Определите проблему
- Система . Попросите учащихся идентифицировать изучаемую систему (например, металлический мост, подверженный определенным силам), интерпретируя информацию, содержащуюся в постановке задачи. Рисование диаграммы — отличный способ сделать это.
- Известные и концепции . Составьте список того, что известно о проблеме, и укажите знания, необходимые для ее понимания (и в конечном итоге) ее решения.
- Неизвестно . Если у вас есть список известных, идентификация неизвестных становится проще. Одно неизвестное обычно является ответом на проблему, но могут быть и другие неизвестные. Убедитесь, что учащиеся понимают, что от них ожидают.
- Единицы и обозначения . Одним из ключевых аспектов решения проблем является обучение студентов тому, как выбирать, интерпретировать и использовать единицы и символы. Сделайте акцент на использовании единиц, когда это применимо. Выработайте у себя привычку постоянно использовать соответствующие единицы и символы.
- Ограничения . Все проблемы имеют определенные или подразумеваемые ограничения. Научите студентов искать только слова, должен, игнорировать или предполагать, чтобы помочь выявить ограничения.
- Критерии успеха . Помогите студентам с самого начала подумать, каким будет логический ответ. Какими характеристиками он будет обладать? Например, количественная задача потребует ответа в той или иной форме числовых единиц (например, $ / кг продукта, квадратный сантиметр и т. Д.), а задача оптимизации требует ответа в виде числового максимума или минимума.
Подумайте об этом
- «Дайте закипеть». Используйте этот этап, чтобы обдумать проблему. В идеале на этом этапе учащиеся должны сформировать мысленный образ проблемы.
- Определите конкретные знания . Студенты должны сами определить необходимые базовые знания из иллюстраций, примеров и задач, рассмотренных в курсе.
- Собрать информацию . Поощряйте студентов собирать соответствующую информацию, такую как коэффициенты пересчета, константы и таблицы, необходимые для решения проблемы.
Спланируйте решение
- Рассмотрим возможные стратегии . Часто тип решения определяется типом проблемы. Вот некоторые распространенные стратегии решения проблем: вычисление; упрощать; используйте уравнение; сделать модель, схему, таблицу или диаграмму; или работать в обратном направлении.
- Выберите лучшую стратегию . Помогите учащимся выбрать лучшую стратегию, еще раз напомнив им, что им нужно найти или рассчитать.
Осуществить план
- Будьте терпеливы . Большинство проблем не решаются быстро или с первой попытки. В других случаях выполнение решения может быть самым простым шагом.
- Будьте настойчивы . Если план не сработает сразу, не позволяйте учащимся унывать.Поощряйте их попробовать другую стратегию и продолжайте пытаться.
Оглянуться назад
Призовите студентов задуматься. Как только решение будет найдено, студенты должны задать себе следующие вопросы:
- Имеет ли смысл ответ?
- Соответствует ли это критериям, установленным на шаге 1?
- Я отвечал на вопросы?
- Что я узнал, сделав это?
- Мог ли я решить проблему другим способом?
Ресурсы
- Foshay, R., Киркли, Дж. (1998). Принципы обучения решению проблем. http://www.plato.com/pdf/04_principles.pdf
- Хейс, Дж. Р. (1989). Полное решение проблем. 2-е издание. Хиллсдейл, Нью-Джерси: Лоуренс Эрлбаум Ассошиэйтс.
- Вудс Д.Р., Райт Д.Д., Хоффман Т.В., Свартман Р.К., Дойг И.Д. (1975). Обучение навыкам решения проблем.
Инженерное образование. Том 1, № 1. с. 238. Вашингтон, округ Колумбия: Американское общество инженерного образования.
Эта лицензия Creative Commons позволяет другим редактировать, настраивать и развивать нашу работу в некоммерческих целях при условии, что они нам доверяют и указывают, были ли внесены изменения.Используйте этот формат цитирования: Обучение навыкам решения проблем. Центр передового опыта преподавания, Университет Ватерлоо .
.